MAINTENANCE

FRICK® QUANTUM™ LX
AcuAir™
CONTROL PANEL
Version 3.2x
TABLE OF CONTENTS

SECTION 1
INTRODUCTION TO THE QUANTUM™ LX ACUAIR™ CONTROL SYSTEM ... 6
 Introduction .. 6
 Control Panel Enclosure .. 6
 General Information ... 7
 What To Do Before Calling The Factory .. 7
 Quantum™ AcuAir Control Panel .. 8
 Version Identification ... 8
 Q5 Control Enclosure ... 9
 Q4 Control Enclosure .. 10

SECTION 2
Q5 CONTROLLER BOARD .. 12
 Introduction ... 12
 Features ... 12
 What Should Occur When Applying Power ... 12
 Battery Function And Replacement ... 12
 Q5 Interface Board ... 12
 Q5 Board ... 13
 Q5 Board Jumpers, LED’s and Connectors .. 14
 Q5 Interface Board Jumpers, LED’s and Connectors ... 15
 Q5 Interconnections ... 16
 Power Supply (Q5) .. 17
 Description .. 17
 Measuring Voltages ... 17
 Adjustment .. 17
 Power Supply Replacement ... 17
 Q5 AcuAir™ Replacement Parts .. 18

SECTION 3
Q4 CONTROLLER BOARD .. 20
 Introduction ... 20
 What Should Occur When Applying Power ... 20
 Battery Function And Replacement ... 20
 Q4 Board ... 21
 Q4 Board Settings ... 22
 Power Supply (Q4) .. 23
 Description .. 23
 Adjustment .. 23
 Replacement .. 24
 Q4 +5 DC Voltage Measurement Location .. 24
 Q4 DC Power Supply Layout ... 25
 Q4 AcuAir™ Replacement Parts .. 26

SECTION 4
DIGITAL BOARD .. 28
 Information ... 28
 Digital Board Description .. 28
 Communications LED’s ... 28
 Connections to the Quantum™ .. 28
 Logic Voltage (Power) LED ... 28
 Active LED .. 29
 Digital Inputs .. 29
 Digital Outputs ... 29
 Checking The Digital Inputs And Outputs ... 29
 Fuse Testing And Replacement ... 30
 Input And Output Module Testing And Replacement .. 30
Troubleshooting An Output ... 30
Troubleshooting An Input ... 30
Replacing A Defective Digital Board .. 30
Digital I/O Board Pictorial ... 31
Digital Board Settings ... 32
Communications Settings ... 32
Dipswitch Settings ... 32

SECTION 5

ANALOG BOARD ... 34
Overview .. 34
Analog Board Versions ... 34
Analog Board Description ... 34
Communications LED’s .. 34
Connections To The Quantum™ .. 34
Logic Voltage (Power) Led’s ... 35
Active LED ... 35
Analog Inputs ... 35
Analog Outputs ... 35
Troubleshooting The Analog Inputs And Outputs 36
Replacing A Defective Analog Board ... 36
Analog Board Pictorial .. 37
Analog Board Settings ... 38
Communications .. 38
Dipswitch Settings ... 38

SECTION 6

SERVICE SCREENS .. 40
Communications Log .. 40
Communications Loop-Back Test ... 41
Diagnostics ... 42
Software Maintenance ... 43
USB Memory Stick Plug-In Locations .. 45
Miscellaneous Maintenance Screens ... 46
About ... 46

SECTION 7

TROUBLESHOOTING ... 47
Troubleshooting A Problem That Appears Unexplainabel 47
Erasing System Setpoints ... 48

SECTION 8

AcuAir™ CONTROL PANEL DRAWINGS ... 49
Q5 Wiring Diagrams .. 50
Q4 Wiring Diagrams .. 61
Communications Wiring Diagrams .. 69
To Customer Remote Computer/Dcs .. 69
RS-485 Communications ... 69
RS-422 Communications ... 69

THE FOLLOWING PUBLICATIONS ARE AVAILABLE FROM THE FRICK™WEBSITE frickcold.com

090.510-CS Frick™ Quantum™ LX AcuAir™ Control Panel Communications Setup (setup and wiring for data communication using available protocols)
090.510-M Frick™ Quantum™ LX AcuAir™ Control Panel Maintenance (repair and troubleshooting)
090.510-O Frick™ Quantum™ LX AcuAir™ Control Panel Operation – Service
SECTION 1

INTRODUCTION TO THE QUANTUM™ LX AcuAir™ CONTROL SYSTEM
INTRODUCTION

The Quantum™ LX AcuAir™ panel differs from previous AcuAir™ panels. Version 2.0x and earlier used a LCD display and keypad, mounted to a central control panel, which was capable of controlling up to four Air Handlers. The Quantum™ LX AcuAir™ version 3.0x and later, utilizes networking capabilities, which greatly increases the total number of Air Handlers that may be connected to the system. This number is technically unlimited. The network can be viewed remotely through any web browser, or the optional Frick™ AcuAir™ Operator Interface Panel (see 090.510-O for further information).

The Frick® Quantum™ LX control system consists of the following major areas:

- **Quantum™ Controller** - The brains of the system. Recently, there have been two versions of Quantum™ board in production, the Q4 board and the Q5 board. Both of these boards are discussed in greater detail later in this manual.

 The combination of the hardware (Quantum™ board) and the software program that runs on it creates what we call the Quantum™ LX system. The Quantum™ board communicates with all of the Digital and Analog boards. This communication allows the Quantum™ to read the status of all the I/O boards, and display the data on the interface screen. The Quantum™ acts on this data, and provides the necessary control information to the I/O boards to provide the appropriate control of all input and output signals, based upon the configuration of installed features and options of the compressor package. Operator interaction is provided through the keypad, as well as informational status to the display. Interaction to the outside world is provided through industry-standard communications protocols. Additional information about the Quantum™ can be found under the **QUANTUM™ CONTROLLER** sections found later in this manual.

- **Power Supply** - Provides the necessary operating voltages for the proper operation of all control components. Additional information about the power supply can be found under the **POWER SUPPLY** sections found later in this manual.

- **Digital Input / Output Boards** - Digital (on/off) signals are sent and received by these boards. The output signals are used for energizing solenoids, valves, contactors, relays, etc., and the input signals are used to sense the condition of switches, relay contacts, auxiliary contacts, etc. This board runs an independent software program from the Quantum™ to control devices, and communicates the status of all devices back to the Quantum™. Additional information about the Digital Boards can be found under the **DIGITAL BOARD** section found later in this manual.

- **Analog Input / Output Boards** - Analog (variable) signals are sent and received by these boards. The output signals are used for controlling VFDs, modulated valves, etc., and the input signals are used to read the values being sent from pressure transducers, temperature sensors, etc. This board runs an independent software program from the Quantum™ to control devices, and communicates the status of all devices back to the Quantum™. The Analog board has 24 analog inputs, and 8 analog outputs. Additional information about the Analog board can be found under the **ANALOG BOARD** section found later in this manual.

- **Operator Interface** - (NOTE: Quantum™ LX software version 2.0x and earlier only). This section consisted of two major components; the Display and the Keypad. The Display is used to show the operator, via a graphical interface, the actual status of all compressor values. Warnings and shutdowns (and history/trending), pressure and temperature values, digital I/O status, setpoints, etc. are viewed on this display. The Keypad is used by the operator to enter data to the Quantum™ controller such as setpoint values, calibration data, etc.

 On software version 2.1x and later, there is no local Operator Interface. All interaction to the controls is through either a Web Browser, or the optional Operator Interface Panel (see 090.510-O for further information).

CONTROL PANEL ENCLOSURE

The two pictorials that appear on this page represent the control portion of the unit. The top drawing shows the inside of the top of the enclosure with the door opened, and contains the following components:

- Field and panel wiring terminals
- Digital and Analog control
- Fuses and circuit breakers
- Pressure switches
- An auxiliary 120-volt plug to be used for maintenance purposes.
- Control Relays
GENERAL INFORMATION

The components within the control panel can be inadvertently damaged by static electricity or mishandling. Only qualified technicians should directly handle these components.

1. DO NOT attempt to make corrections to the power supply without shutting off the power to the control panel. Accidental shorts can irreparably damage the processor boards or the display screen.

2. DO NOT HANDLE the panel boards when their cables are disconnected without first attaching a properly grounded wrist ground strap to prevent static electrical discharge from your body.

Most problems encountered with the microprocessor and control circuits will be the result of a wiring fault, a blown fuse, faulty I/O module or failure of a peripheral control such as a solenoid coil or a pressure transducer. Faults in the computer, while possible, are unlikely. If a fault develops in the computer, the probability is that all functions will cease and the display screen will go blank. The control system consists of an AC (high voltage) side, which can be either 120 volts, or 230 volts, and a DC (low voltage) side. The AC side actuates solenoids, relays, alarms, and other electromechanical functions. The DC side operates the computer and its various sensors.

When working within the panel, the AC high voltage side, which can be either nominal 120 VAC or nominal 230 VAC, CAN CAUSE INJURY OR DEATH.

To troubleshoot the low-voltage side of the control circuits, it is necessary to have the following tools:

1. Accurate digital multimeter (capable of reading to DC/AC, mA to the hundreds place)

2. Small wire stripper

3. Small screwdriver (with insulated shaft)

4. Small snip nose pliers

5. Wrist Grounding strap

6. Static free grounded work surface

Note: Proper panel voltage refers to the AC (high voltage) that has been supplied to the panel, which could be either nominal 120 VAC or nominal 230 VAC.

WHAT TO DO BEFORE CALLING THE FACTORY

Many times when a suspected Quantum™ problem is called in to the factory, not enough information is provided for the service personnel to assist in solving the problem. This is because the caller most likely is not aware of the type of information that would be useful to factory personnel in helping to identify and correct the problem. An example of this is the statement that the Quantum™ is not booting (the main processor board is not starting).

Before calling the factory for assistance, review the information on the following pages and try to discover and resolve your Quantum™ LX problem. The actual cause of most problems is usually not with the Quantum™ board itself, but with something external. However, on the rare occasion that the problem has been identified as being the Quantum™ board, use the following section as a guideline for replacing it.

If, after reviewing the information that follows, the problem cannot be isolated, then refer to the section on Troubleshooting, which appears later in this manual for additional information.
VERSION IDENTIFICATION

Within the last several years, two versions of AcuAir control systems have been produced. The version that is currently being produced is based on the Q5 processor board, and can be identified by the appearance of the enclosures:

The Q5 controller utilizes an enclosure for the controls, and a separate enclosure for the starter system.

The previous system was based on the Q4 processor board, and utilized a single, large enclosure for both the controls and the starter system:

This manual will address both versions of control panel systems, starting with the Q5.
Q5 CONTROL ENCLOSURE

Although both the Q4 and Q5 enclosures contain many of the same components, they differ greatly in their layout. Be aware that the panel represented below, may vary slightly based upon installed options. The following pictorial depicts the general layout of backplate of the Q5 control system:
Q4 CONTROL ENCLOSURE

Although both the Q4 and Q5 enclosures contain many of the same components, they differ greatly in their layout. Be aware that the panel represented below, may vary slightly based upon installed options. The following pictorial depicts the general layout of backplate and inside of the door of the Q4 control system:
SECTION 2

Q5 CONTROLLER
INTRODUCTION

Frick® Controls has released the latest version of the Quantum™ LX microprocessor board. This brand will be referred to as the Q5. A photo of this board appears here:

FEATURES

The Q5 board includes the following features:

- 6 total USB ports (2 are dedicated, 4 are available)
- 10/100/1000 Mbps Ethernet Connection
- 2 RS-422 ports
- 2 RS-485 ports
- External Video monitor connection
- LED indicators to verify proper operation of various on board areas (power, communications, Ethernet connectivity, etc.)
- 2 GB RAM memory
- Battery to maintain date and time

WHAT SHOULD OCCUR WHEN APPLYING POWER

When powering up, the following sequence of events are indicative of a properly working main processor board:

- The six LED’s in the lower left corner should turn on solid.
- The on-board “buzzer” should “beep” once.

After the Q5 has properly powered up, the following sequence of events is indicative of proper communication to the analog and digital boards:

- The Analog and Digital I/O boards TX/RX lights should be blinking.
- Each I/O board should have the power LED lighted and the Active LED should be blinking.
- The first thing that should be checked when troubleshooting the Q5 board is its powering up sequence.

BATTERY FUNCTION AND REPLACEMENT

The Q5 board utilizes a battery to maintain correct date and time for the purpose of stamping warnings and shut-downs with the date and time that they occurred. If the date and time are not being maintained properly, this may indicate that the battery is not functioning, and should be replaced. The battery may be ordered through Baltimore Parts (P/N 333Q0001786) or may be purchased at most electronic shops (manufacturers P/N CR-2032).

The battery is fully assessable, but is surrounded by sensitive electronic components, so care should be taken when changing.

To replace the battery, ensure that the Control Power switch has been turned OFF.

Locate the Battery socket, as shown on the following drawing:

Place your fingernail under the edge of the battery, and gently lift up. The battery should release itself from the socket easily. Take a new battery and place it into the holder in the same orientation as the old battery (the side with the writing must be facing out). Return the Control Power switch back to ON.

Q5 INTERFACE BOARD

An interface board has been developed by Frick controls allowing the user to interface exterior connections to the Q5. A photo of this interface board is shown here:
NOTE 1: The triangle symbol (▲) denotes Pin 1 on connectors. Refer to the chart on the following page for jumper settings.

NOTE 2: Do NOT remove the CN4 jumper. Removal of this jumper will cause the processor to not power up.

NOTE 3: Although the Q5 board is the main controller, most of customer connections will be to the Interface board, as shown later.
JUMPER TABLE

<table>
<thead>
<tr>
<th>Jumper Title</th>
<th>Function</th>
<th>Jumper Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMOS1</td>
<td>Normal (default)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clear CMOS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24-bit 800x600</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24-bit 1024x768</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18-bit 800x600</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18-bit 640x480 (default)</td>
<td></td>
</tr>
</tbody>
</table>

NOTE 1:
The triangle symbol (▲) denotes Pin 1 on connectors.

NOTE 2:
Jumper CN4 is not shown on this chart, as it must always be installed.

LED DEFINITION TABLE

<table>
<thead>
<tr>
<th>LED Title</th>
<th>Label</th>
<th>Color</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power LED’s</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LED1</td>
<td>Red</td>
<td></td>
<td>5VSB</td>
</tr>
<tr>
<td>LED2</td>
<td>Red</td>
<td></td>
<td>3VSB</td>
</tr>
<tr>
<td>LED3</td>
<td>Green</td>
<td></td>
<td>VCC 12V</td>
</tr>
<tr>
<td>LED4</td>
<td>Green</td>
<td></td>
<td>VCC 5V</td>
</tr>
<tr>
<td>LED5</td>
<td>Green</td>
<td></td>
<td>VCC 3V</td>
</tr>
<tr>
<td>LED6</td>
<td>Blue</td>
<td></td>
<td>Power On OK Status</td>
</tr>
<tr>
<td>CN1000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000MB</td>
<td>Green</td>
<td></td>
<td>Giga – LAN Speed</td>
</tr>
<tr>
<td>100MB</td>
<td>Yellow</td>
<td></td>
<td>100MB – LAN Speed</td>
</tr>
<tr>
<td>10MB</td>
<td>Red</td>
<td></td>
<td>10MB – LAN Speed</td>
</tr>
<tr>
<td>ACT</td>
<td>Green (Blinks)</td>
<td></td>
<td>LINK Activity</td>
</tr>
</tbody>
</table>

CONNECTOR PINOUT TABLE

<table>
<thead>
<tr>
<th>Connector Title</th>
<th>Pin</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN_PWR1 (Power Input)</td>
<td>1</td>
<td>Ground (GND)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Ground (GND)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>VCC 12V</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>VCC 5V</td>
</tr>
<tr>
<td>COM1 & COM2 (RS-232 Communications)</td>
<td>2</td>
<td>Receive (RX)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Transmit (TX)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Ground (GND)</td>
</tr>
<tr>
<td>COM3 & COM4 (RS-485 Communications)</td>
<td>1</td>
<td>-RX/TX</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>+RX/TX</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Ground (GND)</td>
</tr>
</tbody>
</table>
Jumper Title | Function | Jumper Setting
--- | --- | ---
J1 | RS-422 (4-Wire) Default | 3 2 1 | 1 - 2 Closed
J1 | RS-485 (2-Wire) | 3 2 1 | 2 - 3 Closed
J2 | Pull Down Default | | 1 Pin Only
J3 | Pull Up Default | | 1 Pin Only
J5 | RS-422 Default | | 1 Pin Only
J5 | RS-485 | | 1 - 2 Closed
J6 | RS-422 Default | | 1 Pin Only
J6 | RS-485 | | 1 - 2 Closed
J4 | High Speed Target Default | | 1 - 2 Closed

NOTE: The triangle symbol (△) denotes Pin 1 on connectors.

### Jumper Title	Function	Jumper Setting
J7 | RS-422 (4-Wire) Default | 3 2 1 | 1 - 2 Closed
J7 | RS-485 (2-Wire) | 3 2 1 | 2 - 3 Closed
J13 | Pull Down Default | | 1 Pin Only
J16 | Pull Up Default | | 1 Pin Only
J17 | RS-422 Default | | 1 Pin Only
J17 | RS-485 | | 1 - 2 Closed
J18 | RS-422 Default | | 1 Pin Only
J18 | RS-485 | | 1 - 2 Closed
J22 | High Speed Target Default | | 1 - 2 Closed

NOTE: The triangle symbol (△) denotes Pin 1 on connectors.
Q5 INTERCONNECTIONS

The pictorial below depicts the Q5 motherboard, and the necessary interconnects between it and the Interface board. Each of the interconnecting harnesses must be installed as shown for proper operation.

If the harness for either COMM1 or COMM2 is ever removed for either repair, replacement or troubleshooting, ensure that the pinout matches as shown here when plugging the ends back in. All other Interconnection harness ends share the same pinout at both ends.
POWER SUPPLY (Q5)

DESCRIPTION

The power supply of the Q5 control panel consists of three DC power supplies, and are located on the DIN rail at the back of the enclosure. The supplies are adjustable and have indicators to show that they are powered.

MEASURING VOLTAGES

CAUTION! Measuring and adjusting the power supply voltages require the control power switch to be energized. Extreme care must be observed when taking any readings, as 120 or 230 VAC (depending on incoming system voltage) will be present next to the DC voltage connector. Adjusting a supply requires the use of a small Philips screwdriver inserted into the supply to access an adjusting potentiometer. CAUTION: It is possible for the screwdriver (and the person making the adjustment) to come into contact with potentially lethal voltages. Proper Personal Protective Equipment (PPE) measures need to be observed.

All circuit boards within the Q5 control panel require accurately adjusted DC voltages in order to function properly. Periodic measurement and adjustment of the DC power system is recommended for optimum system operation. Over time, it is possible for temperature, humidity, vibration and component age, to degrade the accuracy of these voltages. When any of the DC voltages begin to stray from their optimum range, mysterious problems can begin to arise.

Even with a perfectly adjusted supply, it is possible for a potential drop in voltage at each connection point. This drop normally is in the millivolt range, but under some conditions, the drop can be much greater (as high as tenths of a volt). Some examples of problems could be:

- Loss of or intermittent communications failures.
- Q5 reboots for no apparent reason.

To perform measurements and adjustments on the power supply voltage, use a reliable, calibrated Digital Volt Meter (DVM). The DVM should be accurate to 1/100 of a volt DC. With the control power switch turned ON.

In order to properly measure the DC power system, it must be checked at the DC power supply.

ADJUSTMENT

Ensure that the meter is set to the proper range (DC, 0–50 V or equivalent), as well as observing proper wire polarity. The power supply drawing shown on the following page applies to all three power supplies. The adjustment access hole for each supply is located on the lower left of the front of the supplies. If an adjustment is required, use a thin, Philips screwdriver, insert the tip into the access hole for the appropriate voltage potentiometer (refer to the diagram on the following page for adjustment location). NOTE: Extreme care must be used when adjusting the potentiometer. Adjustment should only be performed by qualified personnel. The use of a non-conductive device is recommended.

VDC Adjustment

Locate the DC power supply terminals. Place the negative lead on − and the positive lead on +. Verify that the DVM is displaying in the range as shown on the power supply label.

If adjustment is required, locate the adjustment access hole on the supply, as previously shown. While watching the DVM, slowly rotate the screwdriver blade clockwise to increase the voltage or counterclockwise to decrease until the voltage is correctly adjusted.

POWER SUPPLY REPLACEMENT

If the power supply is found to be bad, or not capable of acceptable adjustment, the failing supply will need replacing. Refer to the Q5 Replacement Parts list for the appropriate part number.
Q5 AcuAir REPLACEMENT PARTS

<table>
<thead>
<tr>
<th>Frick Number</th>
<th>SAP Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Circuit Breakers</td>
</tr>
<tr>
<td>639A0206H03</td>
<td>484045</td>
<td>3 Amp circuit breaker</td>
</tr>
<tr>
<td>639A0206H05</td>
<td>484047</td>
<td>5 Amp circuit breaker</td>
</tr>
<tr>
<td>639A0206H10</td>
<td>484050</td>
<td>10 Amp circuit breaker</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control Power</td>
</tr>
<tr>
<td>639A0185H10</td>
<td>483963</td>
<td>2-Pos. Selector Switch (Control Power)</td>
</tr>
<tr>
<td>639A0185H30</td>
<td>483966</td>
<td>Latch, 3 Across (Attaches contact block to switch mechanism)</td>
</tr>
<tr>
<td>639A0185H36</td>
<td>483969</td>
<td>Block, 1 Normally Open Contact</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Power Supplies</td>
</tr>
<tr>
<td>639B0115H01</td>
<td>642307</td>
<td>5 VDC power supply</td>
</tr>
<tr>
<td>639B0115H02</td>
<td>642308</td>
<td>12 VDC power supply</td>
</tr>
<tr>
<td>639B0115H03</td>
<td>642309</td>
<td>24 VDC power supply</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quantum™ Controllers</td>
</tr>
<tr>
<td>639C0141G01</td>
<td>686440</td>
<td>Q5 Board (Advantage)</td>
</tr>
<tr>
<td>639D0116H01</td>
<td>677556</td>
<td>Q5 Interface Communications Board</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Analog Board</td>
</tr>
<tr>
<td>640D0193H01</td>
<td>670709</td>
<td>Analog Board</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Digital Boards</td>
</tr>
<tr>
<td>111Q0281061</td>
<td>455056</td>
<td>Output Module, 24-280 volt AC</td>
</tr>
<tr>
<td>333Q0000116</td>
<td>466842</td>
<td>Input Module, 120 volt AC</td>
</tr>
<tr>
<td>333Q00001326</td>
<td>467073</td>
<td>Fuse, 5 amp, 250 V</td>
</tr>
<tr>
<td>333Q00013981</td>
<td>467285</td>
<td>Input Module, 24 volt AC</td>
</tr>
<tr>
<td>640D0062H01</td>
<td>484557</td>
<td>Digital Board</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Harnesses</td>
</tr>
<tr>
<td>639D0213H01</td>
<td>855050</td>
<td>DC power</td>
</tr>
<tr>
<td>639D0191H02</td>
<td>696514</td>
<td>Harness Kit, Interface to Q5 board.</td>
</tr>
<tr>
<td>639D0206H01</td>
<td>813407</td>
<td>Harness Wire, AC power - Q5 Power Supplies</td>
</tr>
<tr>
<td>649D5622H01</td>
<td>484417</td>
<td>I/O harness, Digital board</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Panel Heater (Optional)</td>
</tr>
<tr>
<td>333Q00001488</td>
<td>467124</td>
<td>Heater, flex, 120 VAC, 400 W</td>
</tr>
</tbody>
</table>
SECTION 3

Q4 CONTROLLER
INTRODUCTION

Frick® Controls has strived to remain on the cutting edge of microprocessor technology and development. Because of the ever-increasing speed, memory features, and power of microprocessors, Frick® will continue to introduce the latest advancement in microprocessor control technology.

WHAT SHOULD OCCUR WHEN APPLYING POWER

The first thing that should be checked when troubleshooting the Q4 board is its powering up sequence.

When powering up the Q4, the following sequence of events are indicative of a properly working main processor board:

- Green PWR (Power) LED will turn on solid.
- Red FLASH LED will flash several times early in the boot sequence. It is normally not lit.
- LED D8 (on the smaller board) will start to blink at the rate of about once-per-second. It will continue to blink after the Q4 has booted. The only time that this flashing rate is interrupted, is when a key is pressed on the keypad.

After the Q4 has properly powered up, the following sequence of events is indicative of proper communication to the analog and digital boards:

- The Analog and Digital I/O boards TX/RX lights should be blinking.
- Each I/O board should have the power LED lighted and the Active LED should be blinking.

BATTERY FUNCTION AND REPLACEMENT

The Q4 board utilizes a battery to maintain correct date and time for the purpose of stamping warnings and shut-downs with the date and time that they occurred. If the date and time are not being maintained properly, it may indicate that the battery is not functioning, and should be replaced. The battery may be ordered through Baltimore Parts (P/N 333Q0001786) or may be purchased at most electronic shops (manufacturers P/N CR-2032).

The battery is partially covered by the communications daughter board, and is located directly beneath the COM1 port (it may be necessary to unplug any connector that is plugged into COM1 to fully access the battery).

To replace the battery, ensure that the Control Power switch has been turned OFF.

Locate the Battery Release Clip on the following drawing:

Simply push the clip away from the battery, to release the battery from the holder. Remove the battery, observing the orientation. Take a new battery and place it into the holder in the same orientation as the old battery (the side with the writing must be facing out). Reinstall the COM1 plug (if removed), and return the Control Power switch back to ON.
This assembly is shipped from Baltimore Parts with LK4 set to B position for an LG Philips Display.

If using a Samsung, NEC or Sharp Display, set LK4 to position A.

LX panels use the Sharp display.

Note: There are duplicate numbers for the links on the processor (larger) board and the communications (smaller) board. If you must make a change to a jumper (link), ensure that you modify the correct link.
Processor Board Jumpers

<table>
<thead>
<tr>
<th>LK1</th>
<th>in</th>
<th>out*</th>
<th>2 second Watchdog timer timeout</th>
<th>8 second Watchdog timer timeout</th>
</tr>
</thead>
<tbody>
<tr>
<td>LK2</td>
<td>in*</td>
<td>out</td>
<td>Watchdog timer Enabled</td>
<td>Watchdog timer Disabled</td>
</tr>
<tr>
<td>LK3</td>
<td>A</td>
<td>B*</td>
<td>+5V Backlight Voltage (not used)</td>
<td>+12V Backlight Voltage (all displays)</td>
</tr>
<tr>
<td>LK4</td>
<td>A</td>
<td>B*</td>
<td>+5V Supply (Samsung, NEC, Sharp)</td>
<td>+3.3V Supply (LG Philips & Sharp LED Display)</td>
</tr>
<tr>
<td>LK5</td>
<td>A</td>
<td>B*</td>
<td>COM4 IRQ3</td>
<td>COM4 IRQ10</td>
</tr>
<tr>
<td>LK6</td>
<td>A</td>
<td>B*</td>
<td>COM3 IRQ4</td>
<td>COM3 IRQ11</td>
</tr>
<tr>
<td>LK7</td>
<td>A</td>
<td>B*</td>
<td>Battery Backup Enabled</td>
<td>Battery Backup Disabled (CMOS Cleared)</td>
</tr>
<tr>
<td>LK8</td>
<td>in*</td>
<td>out</td>
<td>RS-485 Receiver Enabled</td>
<td>RS-485 Receiver Disabled</td>
</tr>
<tr>
<td>LK9</td>
<td>in*</td>
<td>out</td>
<td>RS-485 Terminated</td>
<td>RS-485 Not Terminated</td>
</tr>
<tr>
<td>LK10</td>
<td>in*</td>
<td>out*</td>
<td>RS-422 Terminated</td>
<td>RS-422 Not Terminated</td>
</tr>
<tr>
<td>LK11</td>
<td>in*</td>
<td>out</td>
<td>Bit 1 of 259H “Logic 1” User Application Link</td>
<td>Bit 1 of 259H “Logic 0” User Application Link</td>
</tr>
<tr>
<td>LK12</td>
<td>in*</td>
<td>out</td>
<td>Bit 2 of 259H “Logic 1” User Application Link</td>
<td>Bit 2 of 259H “Logic 0” User Application Link</td>
</tr>
</tbody>
</table>

* Standard Setting

Communications Board Jumpers

Com-1 (TB1)

<table>
<thead>
<tr>
<th>LK2</th>
<th>in*</th>
<th>out</th>
<th>Terminate COM1</th>
<th>No termination</th>
<th>RS-422/485</th>
</tr>
</thead>
<tbody>
<tr>
<td>LK7</td>
<td>in*</td>
<td>out</td>
<td>Pull down COM1</td>
<td>No pull down</td>
<td>RS-422/485 (Rx-/Tx-)</td>
</tr>
<tr>
<td>LK8</td>
<td>in*</td>
<td>out</td>
<td>Pull up COM1</td>
<td>No pull up</td>
<td>RS-422/485 (Rx-/Tx+)</td>
</tr>
<tr>
<td>LK9</td>
<td>in*</td>
<td>out</td>
<td>Pull down COM1</td>
<td>No pull down</td>
<td>RS-422 (Tx-)</td>
</tr>
<tr>
<td>LK10</td>
<td>in*</td>
<td>out</td>
<td>Pull up COM1</td>
<td>No pull up</td>
<td>RS-422 (Tx+)</td>
</tr>
<tr>
<td>LK16</td>
<td>A</td>
<td>B*</td>
<td>COM1 RS-422 (TB1)</td>
<td>COM1 RS-485 (TB1)</td>
<td></td>
</tr>
</tbody>
</table>

* Standard Setting

Com-2 (TB2 – TB3)

<table>
<thead>
<tr>
<th>LK1</th>
<th>in*</th>
<th>out</th>
<th>Terminate COM2</th>
<th>No termination</th>
<th>RS-422/485</th>
</tr>
</thead>
<tbody>
<tr>
<td>LK3</td>
<td>in*</td>
<td>out</td>
<td>Pull down COM2</td>
<td>No pull down</td>
<td>RS-422/485 (Rx-/Tx-)</td>
</tr>
<tr>
<td>LK4</td>
<td>in*</td>
<td>out</td>
<td>Pull up COM2</td>
<td>No pull up</td>
<td>RS-422/485 (Rx-/Tx+)</td>
</tr>
<tr>
<td>LK5</td>
<td>in*</td>
<td>out*</td>
<td>Pull down COM2</td>
<td>No pull down</td>
<td>RS-422 (Tx-)</td>
</tr>
<tr>
<td>LK6</td>
<td>in*</td>
<td>out*</td>
<td>Pull up COM2</td>
<td>No pull up</td>
<td>RS-422 (Tx+)</td>
</tr>
<tr>
<td>LK11</td>
<td>A</td>
<td>B*</td>
<td>Select RS-232 for COM2 (TB2)</td>
<td>Select RS-422/RS-485 for COM2 (TB3)</td>
<td></td>
</tr>
<tr>
<td>LK17</td>
<td>A</td>
<td>B*</td>
<td>COM2 RS-422 (TB2)</td>
<td>COM2 RS-485 (TB2)</td>
<td></td>
</tr>
</tbody>
</table>

* Standard Setting
Q4 POWER SUPPLY

DESCRIPTION

The power supply may be identified by the location of the AC and DC power connections, which are located on the same end of the supply. These connections are of a push-on multiple contact connector type. Additionally, there is the capability of adjusting the +5 Vdc voltage. Refer to the following page for the location of this potentiometer adjustment. There is no +12 Vdc adjustment on the Condor. If the +12 Vdc, or -12 Vdc is out of acceptable range, the power supply will need to be changed. Extreme care must be used when adjusting the +5 Vdc potentiometer. Adjustment should only be performed by qualified personnel, using an insulated screwdriver.

ADJUSTMENT

All circuit boards within the Q4 control panel require accurately adjusted DC voltages in order to function properly. These voltages consist of +5 Vdc, -12 Vdc, +12 Vdc, and +24 Vdc. Periodic measurement and adjustment of the DC power system is highly recommended for optimum system operation. Over time, it is possible for temperature, humidity, vibration and component age, to degrade the accuracy of these voltages. When any of the DC voltages begin to stray from their optimum range (especially +5 Vdc), problems can begin to arise.

All four DC voltages originate from the power supply. They are then daisy-chained to the Q4 controller, and then on to all connected Digital and Analog boards.

Even with a perfectly adjusted supply, it is possible for a potential drop in voltage at each connection point within the daisy-chain. This drop normally is in the mill-volt range, but under some conditions, the drop can be much greater (as high as tenths of a volt). By the time the voltage reaches the last board in the daisy-chain, and all of these potential voltages drops are considered, the combined drop can be such that serious problems occur. Some examples of serious problems could be:

- Q4 reboots for no apparent reason.
- Improper readings of analog pressures and temperatures.

NOTE: It must be pointed out that the +12 Vdc, -12 Vdc, and the +24 Vdc are not adjustable.

In order to properly measure the DC power, it must be checked at the Q4 controller (CPU), and verified for acceptable total voltage drop at the end of the daisy-chain (last I/O board). For the +5 Vdc (on either power supply), if the voltage at the Q4 is in the range of +5.15 to +5.20, and the voltage being read at the last I/O board is greater than +5.0 V, it can be assumed that the +5 V power is correctly adjusted. For the +12 Vdc, if the range at the last I/O board is between +11.8 and +12.2 Vdc (+12.00 is ideal), it can be assumed that the +12 V power is correct. The range for this voltage is not critical at the Q4, and the reading does not need to be taken there.

CAUTION! Measuring and adjusting the power supply voltages require the control power switch to be energized. Extreme care must be observed when taking any readings, as 120 or 230 VAC (depending on incoming system voltage) is present within the power supply. Adjusting the supply requires the use of a small screwdriver with an insulated shaft inserted into the supply to access an adjusting potentiometer. It is possible for the screwdriver (and the person making the adjustment) to come into contact with potentially lethal voltages.

To perform measurements and adjustments on the power supply voltages, use a reliable, calibrated Digital Voltmeter (DVM). The DVM should be accurate to 1/100 of a volt DC. Turn the control power switch to ON.

Ensure that the meter is set to the proper range (DC, 0-50 V or equivalent), as well as observing proper wire polarity. Measure the +5 Vdc first. Place the negative lead on the common (return) pin, and the positive lead on the +5 Vdc pin as shown. Verify that the DVM is displaying in the range of +5.15 to +5.20. If the reading is outside of this range, then using a thin, flat bladed, insulated screwdriver, insert the tip into the access hole for the appropriate voltage potentiometer (refer to the Q4 D.C. Power Supply Layout). While watching the DVM, slowly rotate the screwdriver blade clockwise to increase the voltage or counter-clockwise to decrease. Once the voltage has been adjusted, remove the DVM probes from the Q4, and install them into the white connector on the last I/O board in the daisy-chain, as shown below:
Check the reading on the DVM. If the reading at the Quantum™ has been adjusted properly, then this reading can be no lower than +5.0 DC. If the voltage is less, check all of the daisy-chain connections on the blue DC-I/O harness. Ensure that all of its connectors are tight. If all connections are good, then go back and start measuring over again, this time beginning at the first board in the daisy-chain. Continue checking the voltage at each connection, until you locate the point at which the voltage drop is excessive. This will usually indicate a connection that is not being made properly, or the sockets within the connector are weak. In either case, the DC-I/O wire harness may need replacing.

Next, you will want to measure the +12 Vdc. Perform the same steps as with the +5 Vdc measurement, with the exception that you will not need to measure at the Quantum™. Measure directly at the last connection. If the voltage is low, ensure that there is not an excessive voltage drop in the daisy-chain. If the voltage is out of range, then the supply itself may need replaced.

The -12 Vdc may be measured the same as the other voltages, however, this voltage is not adjustable on any supply, so if the harness is not the culprit, the supply may need to be replaced.

REPLACEMENT

If the power supply is found to be bad, or not capable of acceptable adjustment, it will need replacing. When ordering this replacement, you will receive an upgrade kit. The purpose of this kit is to allow for the upgrading of the I/O DC power harness, at the same time as replacing the power supply. Refer to the Recommended Spare Parts list for the upgrade part number. This upgrade kit will include the following components:

- Screws (6-32 x 3/8 flat head)
- Power supply (Condor)
- DC power cable harness (this is an improved version of the previous power cable)
Q4 DC POWER SUPPLY LAYOUT

CAUTION

Use only a screwdriver with an insulated shaft to perform adjustment.

<table>
<thead>
<tr>
<th>INPUT: J1</th>
<th>INPUT: J2</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMP P/N: 640445-5</td>
<td>AMP P/N: 1-640445-3</td>
</tr>
<tr>
<td>.312 CTR CONNECTOR, 3 CIRCUITS</td>
<td>.156 CTR CONNECTOR, 13 CIRCUITS</td>
</tr>
<tr>
<td>Pin 1 AC GROUND</td>
<td>PIN 1 OUTPUT #1 (+5.1V)</td>
</tr>
<tr>
<td>Pin 3 AC NEUTRAL</td>
<td>PIN 2 OUTPUT #1 (+5.1V)</td>
</tr>
<tr>
<td>Pin 5 AC LINE</td>
<td>PIN 3 OUTPUT #1 (+5.1V)</td>
</tr>
</tbody>
</table>

MATING CONNECTORS: MOLEX

<table>
<thead>
<tr>
<th>HOUSING</th>
<th>CONTACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT 26-03-4050 08-52-0113</td>
<td>PIN 4 COMMON</td>
</tr>
<tr>
<td>OUTPUT 26-03-4131 08-52-0113</td>
<td>PIN 5 COMMON</td>
</tr>
<tr>
<td>INPUT 26-03-4050 08-52-0113</td>
<td>PIN 6 COMMON</td>
</tr>
<tr>
<td>OUTPUT 26-03-4131 08-52-0113</td>
<td>PIN 7 COMMON</td>
</tr>
<tr>
<td>INPUT 26-03-4050 08-52-0113</td>
<td>PIN 8 OUTPUT #2 (+24V)</td>
</tr>
<tr>
<td>OUTPUT 26-03-4131 08-52-0113</td>
<td>PIN 9 OUTPUT #2 (+24V)</td>
</tr>
<tr>
<td>POWER FAIL</td>
<td>PIN 10</td>
</tr>
<tr>
<td>OUTPUT #3 (-12V)</td>
<td>PIN 11</td>
</tr>
<tr>
<td>COMMON</td>
<td>PIN 12</td>
</tr>
<tr>
<td>OUTPUT #4 (+12V)</td>
<td>PIN 13</td>
</tr>
</tbody>
</table>
Q4 AcuAir REPLACEMENT PARTS

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Analog Board</td>
</tr>
<tr>
<td>640C0057G01</td>
<td>Analog Board #1 (Replaces existing 32 channel board #1 only - no hardware)</td>
</tr>
<tr>
<td>640C0057G33</td>
<td>Analog Board #1 (Field Upgrade Kit - Includes 32 channel board #1, connectors & hardware)</td>
</tr>
<tr>
<td></td>
<td>Circuit Breakers</td>
</tr>
<tr>
<td>639A0206H02</td>
<td>2 Amp circuit breaker</td>
</tr>
<tr>
<td>639A0206H03</td>
<td>3 Amp circuit breaker (for optional panel heater)</td>
</tr>
<tr>
<td>639A0206H10</td>
<td>10 Amp circuit breaker</td>
</tr>
<tr>
<td></td>
<td>Connectors</td>
</tr>
<tr>
<td>649B0903H01</td>
<td>2-Pole connector (P8 – Analog Board)</td>
</tr>
<tr>
<td>333Q0001258</td>
<td>6-Pole connector (P1 through P6 – Digital Board, P4A through P10B – Analog Board)</td>
</tr>
<tr>
<td>333Q0001234</td>
<td>8-Pole connector (P11A and P11B – Analog Board)</td>
</tr>
<tr>
<td>649B0903H02</td>
<td>9-Pole connector (P2 – Analog Board)</td>
</tr>
<tr>
<td></td>
<td>Control Power</td>
</tr>
<tr>
<td>111Q0280958</td>
<td>Surge suppresser</td>
</tr>
<tr>
<td>333Q0001932</td>
<td>Relay, 2 Pole, 24 VAC</td>
</tr>
<tr>
<td>333Q0001095</td>
<td>Relay, 2 Pole, 24 VDC</td>
</tr>
<tr>
<td>333Q0001915</td>
<td>Relay base, 2 Pole</td>
</tr>
<tr>
<td>111Q0831800</td>
<td>Diode for 24VDC Relay</td>
</tr>
<tr>
<td>639A0185H10</td>
<td>2-Pos. Selector Switch (Control Power)</td>
</tr>
<tr>
<td>639A0185H30</td>
<td>Latch, 3 Across (Attaches contact block to switch mechanism)</td>
</tr>
<tr>
<td>639A0185H36</td>
<td>Normally Open Contact Block (for Control Power Switch)</td>
</tr>
<tr>
<td></td>
<td>Digital Boards</td>
</tr>
<tr>
<td>111Q0281061</td>
<td>Output Module, 24-280 volt AC</td>
</tr>
<tr>
<td>333Q000116</td>
<td>Input Module, 120 volt AC</td>
</tr>
<tr>
<td>333Q0001326</td>
<td>Fuse, 5 amp, 250 V</td>
</tr>
<tr>
<td>333Q0001931</td>
<td>Input Module, 24 volt AC</td>
</tr>
<tr>
<td>640C0024G61</td>
<td>Digital Board #1 (replaces existing board)</td>
</tr>
<tr>
<td>640C0024G62</td>
<td>Digital Board #2 (replaces existing board)</td>
</tr>
<tr>
<td></td>
<td>Flash Cards and Software</td>
</tr>
<tr>
<td>649A0886Gxx</td>
<td>Quantum LX Program Flash Card (the xx indicates program version)</td>
</tr>
<tr>
<td></td>
<td>Harnesses</td>
</tr>
<tr>
<td>639D0158H01</td>
<td>DC Wire Harness, Power Supply</td>
</tr>
<tr>
<td>639D0161H01</td>
<td>AC Wire Harness, Power Supply</td>
</tr>
<tr>
<td>639D0162H01</td>
<td>DC power-I/O communications harness, Digital Board 1</td>
</tr>
<tr>
<td>639D0163H01</td>
<td>DC power-I/O communications harness, Digital Board 2</td>
</tr>
<tr>
<td>640B0039H01</td>
<td>Shunting plug (for troubleshooting only)</td>
</tr>
<tr>
<td></td>
<td>Miscellaneous</td>
</tr>
<tr>
<td>333Q0001179</td>
<td>Heater, flex, 120 VAC, 150 W (optional)</td>
</tr>
<tr>
<td>649A0998H03</td>
<td>Differential Pressure Switch</td>
</tr>
<tr>
<td></td>
<td>Power Supplies</td>
</tr>
<tr>
<td>333Q0001637</td>
<td>DC power supply</td>
</tr>
<tr>
<td></td>
<td>Quantum™ Controllers</td>
</tr>
<tr>
<td>649C1091G01</td>
<td>Q4 (Arcom GX1)</td>
</tr>
<tr>
<td>639C0130G01</td>
<td>Communications Daughter board only.</td>
</tr>
</tbody>
</table>
SECTION 4

DIGITAL BOARD
DIGITAL BOARD

INFORMATION

The information that follows in this section can help locate problems that can occur with Digital Input and Output circuit boards, and their interaction with the Q4/Q5 controller.

DIGITAL BOARD DESCRIPTION

The Digital Board is actually a small microprocessor board and programmed to control discrete outputs, or accept discrete inputs, from external electrical devices. Each Digital Board has the capability of 24 independent channels or I/O (Input/Output). With the Quantum™ LX AcuAir™ Control, some of these I/O channels are dedicated as to their function, through the operating system (software), enabled options and external wiring. Each channel that is used by the software will have a module plugged into it. A yellow module indicates that it is used for Inputs, a black module is used for Outputs. The standard Quantum™ LX AcuAir™ Control can have up to two Digital Boards (depending on options).

COMMUNICATIONS LED’S

The controller is in constant communication with all Digital (and Analog) Boards. You will notice on each Digital and Analog board, that there are a pair of LED’s labeled as RX and TX. These letters represent Receive (RX) and Transmit (TX). These LED’s should be flashing at a high rate during normal operation. This indicates that the Q5 (or Q4) control board, and the Digital Board that you are looking at, are properly communicating with each other.

• Reference the JUMPER AND DIPSWITCH SETTINGS section later in this manual. This section contains the dipswitch settings for addressing the Digital I/O Boards. When these switches are properly set, the Q5 (or Q4) board is able to serially communicate with each I/O board and provide control signals and data exchange. If these switches are not properly set, the result will be lost or failed communications, or the wrong outputs being energized, or the wrong inputs being received.

CONNECTIONS TO THE QUANTUM™

The Frick® AcuAir™ control system utilizes up to two Digital, and one Analog Boards. To connect all of these boards together so that the Q4/Q5 can control them, they must be interconnected with a wiring harness that provides all of the necessary D.C. voltage requirements, as well as the communications capabilities. Upon close examination of this harness, you will notice that each of the connectors have two rows of connections. The wires that are inserted into the positions of one row, are internally daisy-chained on each I/O board, to continue the voltages and signals to the adjacent row. Therefore, any time that a connector is unplugged from the daisy-chain, these voltages and signals cannot continue through the daisy-chain to the next board. Whenever a plug is not to be inserted into a board, either for service or if not all boards are present, then a shunting plug (refer to Replacement Parts list) must be installed onto the open connector.

The Digital Boards only require the +5 Vdc voltage and the Return (or common) for logic power. The communications signals (RX & TX) are required by all boards.

LOGIC VOLTAGE (POWER) LED

Located on the Digital Board is a Power LED. This LED will be illuminated as long as the Control Power switch is ON, and the proper voltage is present at the Remote panel power supply. The power supply generates the +5 VDC voltage, and passes it on through the Power-I/O harness. This LED does not indicate however that the proper voltage is necessarily present at the board, only that the voltage is enough to energize the voltage sensing circuitry. If a voltage related problem is suspected with regard to a Digital Board, the only way to actually determine this is to read the voltage on a Digital Voltage Meter (DVM). This may be accomplished by locating the white power/communications connector on the board. Notice that the Digital Board has one of these connectors on both ends of the board. The associated power/communications harness will only be plugged into one of these connectors. Take the red (positive) probe of the DVM and carefully insert the end into the “+5V” lead, and the black (negative) probe end into the “RET” (Return or Common) lead, as shown below:

Set the DVM to read DC, and set the proper range. The voltage reading must read a minimum of +5.0 Vdc. The Power-I/O harness will have an associated voltage drop at each board connection. As an example, if you are reading the voltage at the first I/O board in the daisy-chain, and it reads 4.98 Vdc, you can be assured that the voltage at the subsequent connections for the remaining boards will be lower yet. The voltage will need to be corrected for proper operation of the system. The cause for a low voltage reading could be:

• The power supply may need adjustment (see the section on power supplies).
• The Power-I/O communications harness has a problem (a new harness may be needed).
• A problem may exist with one of the I/O boards (Digital or Analog).
If the power LED is not lighted, check the cable for proper connectivity. Note: Each board provides the necessary connections to feed all signals to the following connectors. If the auxiliary Analog or Digital Board is not present then a jumper plug (see Recommended Spare Parts List) must be installed to daisy chain the signals.

ACTIVE LED

The Digital Board(s) have an Active LED indicator on the board that blinks when the board’s software is running.

If the Active LED is not blinking, check to ensure that the EPROM is installed properly. The EPROM is located in chip slot U8, next to the power connector.

DIGITAL INPUTS

A Digital Input is the portion of the hardware that allows devices such as limit switches, relay contacts, and level switches, to interface with the Q4/Q5. The software program within the Quantum™ is constantly looking at these Input channels, via communications, and based upon whether a control voltage is present or not, will provide the necessary control for an associated Output channel.

The following pictorial shows a side view of the 120 VAC Input module. The color of an Input module is yellow:

![Input Module Pictorial]

Never plug a 120 Volt Input module into a 240 Volt system, and vice versa. Never plug an Output module into a position designated for an Input module.

You will notice that when a module is plugged into the Digital board, there is a fuse located directly adjacent to the module. This fuse is of the plugable variety, and must be plugged into the IN position for an Input module.

The following pictorial shows a side view of the 120 VAC Output module. The color of an Output module is black:

![Output Module Pictorial]

Although this Output module is labeled as 280 VAC on the top, and on the side, it can be used on both 120 and 240 volt applications.

Never plug an Input module into a position designated for an Output module.

You will notice that when a module is plugged into the Digital Board, there is a fuse located directly adjacent to the module. This fuse is of the plugable variety, and must be plugged into the OUT position for an Output module.

CHECKING THE DIGITAL INPUTS AND OUTPUTS

Some problems that may be encountered involve troubleshooting the digital inputs and outputs. The Digital I/O (Input / Output) Boards have six Digital I/O (DIO) board connectors labeled P1 through P6. The Input and Output modules are wired to a DIO connector plug. Position 3 provides power and position 4 is a neutral on the DIO connectors. Positions 1, 2, 5, and 6 are signal connections, as shown below:

![DIO Connector Pictorial]

The Digital I/O board’s I/O modules are configured by proper module selection, AC or DC, operating voltage, input or output, and moving the fuse to the in or out position. An LED is associated with each module and displays the state of each module. A lit LED represents an Input that is High, receiving a signal or an Output that is On.

If a properly configured Digital I/O is not responding correctly, first look at the Digital Board on the Digital I/O Screen and check if the module is on. If it is not on, check if the LED on the Digital Board is also not lit. If the LED is not lit, then check the fuse. If the fuse is OK, then check the module.

DIGITAL OUTPUTS

A Digital Output is the portion of the hardware that the Quantum™ is to control (energize). These devices include solenoids, relay coils, and heaters to be energized, based upon the logic within the Quantum™ LX software program.
FUSE TESTING AND REPLACEMENT
1. Power off the panel.
2. Open the panel door.
3. Remove the questionable fuse.
4. Place the questionable fuse into the fuse tester at the one end of each Digital I/O Board (refer to the Digital Board drawings at the end of this section for exact fuse tester location).
5. Power on the panel.
6. Check the LED on the tester. If the LED is lit, the fuse is OK.
7. Power off the panel.
8. If the fuse is faulty, check for external shorts on the corresponding circuit, then replace the fuse with a new plug-type fuse (refer to Recommended Spare Parts list).

INPUT AND OUTPUT MODULE TESTING AND REPLACEMENT
1. Power off the panel.
2. Open the panel door.
3. Replace the questionable module.
4. Power on the panel.
5. If it is an Output module, check for proper panel voltage on the DIO connector plug. Check the voltage between position 4 (neutral) and the associated position to the Output module.
6. If it is an Input module, check if the associated LED is on when power is applied to the module.

TROUBLESHOOTING AN OUTPUT
1. Make sure the LED associated with the Output is on when power is applied to the module.
2. If the LED is not on when it should be and there is no operating condition preventing it, contact the Frick® Service Department.
3. If the LED is on when it should be, check for proper panel voltage on the DIO connector plug. Check the voltage between position 4 (neutral) and the associated position to the Output module.
4. If the voltage is OK, check for proper panel voltage between the associated position to the Output module on the DIO connector and the associated position on the terminal strip.
5. If the voltage is OK, check the wiring external to the panel.
6. If voltage is not OK, check the fuse.
7. If the fuse is OK then check the module.
8. If the module is OK, check for proper panel voltage on the DIO connector plug between position 3 (Hot) and position 4 (neutral).

TROUBLESHOOTING AN INPUT
1. Make sure the LED associated with the Input is on when power is applied to the module.
2. If the LED is on then the fuse and Input module are good.
3. If the LED is on and there is no input voltage, replace the Input module.
4. If the LED is not on when power is applied, check the fuse.
5. If the fuse is good, replace the Input module.
6. If you are receiving an Alarm or Shutdown from a digital input in which the adjacent LED indicator light is on, check the Digital I/O screen to see if that channel is turning on and off. If so, replace the input module.

REPLACING A DEFECTIVE DIGITAL BOARD
The procedure to replace a Digital board is outlined below:
1. Shut off control power.
2. Remove the old board from the machine and the new board from its packing and place both on an anti-static surface.
3. Remove any required chip(s) from the defective board and install them in the replacement board.
4. Check that all jumpers, dip switches and components are properly setup on the new board using the old board as a reference (refer to the Digital Settings tables near the end of this section).
5. Install the modified replacement board in the panel.
DIGITAL I/O BOARD PICTORIAL

NOTE 1: ALL OUTPUTS ARE RATED FOR A MAXIMUM 2 AMP LOAD.

NOTE 2: OPTIONAL MODULES INSTALLED WITH PURCHASED OPTION

Liquid (Zone A)
Suction (Zone A)
HOT
NEUTRAL
Hot Gas (Zone A)
Bleed (Zone A)

Fan (Zone A)
Defrost Initiate (Zone A)
HOT
NEUTRAL
Liquid (Zone B)
Suction (Zone B)

Hot Gas (Zone B)
Bleed (Zone B)
HOT
NEUTRAL
Fan (Zone B)
Defrost Initiate (Zone B)

Liquid (Zone C)
Suction (Zone C)
HOT
NEUTRAL
Hot Gas (Zone C)
Bleed (Zone C)

Fan (Zone C)
Defrost Initiate (Zone C)
HOT
NEUTRAL
Aux. Output (Zone A)
Aux. Output (Zone B)

Aux. Output (Zone C)
Aux. Input (Zone A)
Aux. Input (Zone B)
Aux. Input (Zone C)
DIGITAL BOARD SETTINGS

COMMUNICATIONS SETTINGS

The following table is to be used when configuring the Quantum™ for external communications.

J5	in	120 ohm long communications line termination.
	out*	No termination.
J7	in	RS-422/485 transmit pull-up for long communications lines.
	out*	No pull-up.
J8	in	RS-422 transmit pull-up for long communications lines.
	out*	No pull-up.
J9	in	RS-422/485 receive pull-down for long communications lines.
	out*	No pull-down.
J10	in	RS-422 receive pull-down for long communications lines.
	out*	No pull-down.

* = standard setting

DIPSWITCH SETTINGS

The following table is to be used to set the digital board addresses. Refer to and study the diagram at the bottom of this page to determine the correct board configuration.

<table>
<thead>
<tr>
<th>Comm. 4 of Quantum™ (Zones 1-15)</th>
<th>Comm. 3 of Quantum™ (Zones 16-30)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O Group</td>
<td>Digital Board #</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>Off</td>
</tr>
</tbody>
</table>

Quantum™ LX Control Board

Comm. 4 (Zones 1-15)
- I/O Group 1
 - Zones 1, 2, 3
 - Digital Board 1
 - Digital Board 6
 - Analog Board 1

Comm. 3 (Zones 16-30)
- I/O Group 1
 - Zones 16, 17, 18
 - Digital Board 1
 - Digital Board 6
 - Analog Board 1
SECTION 5

ANALOG BOARD
OVERVIEW

The Frick Quantum™ control panel is capable of reading external analog devices, such as temperature probes and pressure sensors. It uses these input signals for the purpose of monitoring and control. As an example, if an external temperature sensor began to read a higher than expected temperature in some area, the controller would sense this change, and provide the necessary output control signal to remedy the situation. Unlike a digital signal, which is typically either an on or off state, an analog signal can assume a wide variety of states, such as a temperature probe reading a wide range of temperatures.

The method used for receiving (and sending) these signals is the analog board. The analog devices are wired directly to the board, and the on-board software/hardware converts the electrical signals received from these devices into data, which is then sent on to the Q4/Q5 control board via communications.

It features twenty-four input channels, and eight output channels. Rather than using physical jumpers to configure each channel, this is done through the software. A more detailed description of the operation of this board is provided in the sections that follow.

ANALOG BOARD VERSIONS

There have recently been two different versions of Analog Board which have been used:

- The earlier of these two boards had the root part number of 640D0190H01. It is essentially the same as the current version (640D0193H01) with the exception that there have been several jumpers added. Since this board is no longer in production, and is the same as the current board (with the exception that it doesn’t have the additional jumpers), it will not be discussed further. A pictorial of this board is presented here for reference purposes:

- The current board, root part number 640D0193H01, replaces the previous version mentioned earlier (640D0190H01). A pictorial of this board is shown here:

ANALOG BOARD DESCRIPTION

The Analog Board is actually a small microprocessor board and is programmed to control analog outputs, or accept analog inputs, from external electrical devices. Each enhanced board has the capability of 24 independent input channels. With the Quantum™ AcuAir™ Control, these I/O channels are dedicated through the software and external wiring, as to the function of each channel.

COMMUNICATIONS LED’S

The Q4/Q5 controller is in constant communication with the Analog (and Digital) Board(s). You will notice on each Analog and Digital board, that there is a pair of LED’s that are labeled RX and TX. These letters represent receive (RX) and Transmit (TX). These LED’s should be flashing at a high rate during normal operation. This indicates that the Q4/Q5, and the board that you are looking at, are properly communicating with each other.

- Refer to the JUMPER AND DIPSWITCH SETTINGS section later in this section. This section contains the dipswitch settings for addressing the Analog I/O Boards. When these switches are properly set, the Q4/Q5 is able to serially communicate with each I/O board and provide control signals and data exchange. If these switches are not properly set, the result can be one of the following:

 - The wrong analog input signals being received
 - The wrong analog output signals being sent from the board.

CONNECTIONS TO THE QUANTUM™

As stated earlier, the Quantum™ AcuAir™ control system utilizes up to two Digital, and one Analog Board. In order to connect all of these boards together so that the Quantum™ can control them, they must be interconnected with a wiring harness that provides all of the necessary D.C. voltage requirements, as well as the communications capabilities. This harness has a 6-pin connector at one end that plugs into the Q4/Q5. Another connector plugs into the power supply. The remaining three connectors (16 pin) will plug into each of the Digital and Analog Boards in the system.
Whenever a plug is not to be inserted onto a board, either for servicing, or if not all boards are present because of the options that are present, then a shunting plug (refer to the Replacement Parts list) must be installed onto the open connector.

The Analog Board requires the +5 Vdc for logic, the -12 Vdc for internal voltage reference, and +12 Vdc for external sensors (plus or +) and the Return (common or -). The communications signals (RX & TX) are required by all boards.

LOGIC VOLTAGE (POWER) LED’S

Located on the 32 channel Analog Board are two power LED’s. The first of these is D1 LED (+5VDC), and will be illuminated as long as the Control Power switch is ON, and the proper +12VDC voltage is present at Analog Board connector P3. The on-board power supply steps the +12VDC down to +5 VDC to power the board. This LED does not indicate however that the proper voltage is necessarily present at the board, only that the voltage is enough to energize the voltage sensing circuitry.

If a voltage related problem is suspected with regard to an Analog Board, the best way to actually determine this is to read the voltage on a DVM (Digital Volt Meter). This may be accomplished by locating the white power / communications connector on the board. Notice that the Analog Board has only one of these connectors. The associated power/communications harness plugs in to it. Take the red (positive) probe of the DVM and carefully insert the end into the +12VDC lead, and the black (negative) probe end into the RET (Return or Common) lead, as shown below:

```
+12VDC
RET
```

Set the DVM to read DC, and set the proper range. The ideal voltage range setting for the +12VDC power is 12.10 VDC (+/- 0.05).

The cause for a low voltage reading could be:

- The power supply may need adjustment (see the section on power supplies).
- The Power-I/O communications harness has a problem (a new harness may be needed).
- A problem may exist with one of the I/O boards (Digital or Analog).
- If the power LED is not lighted, check the cable for proper connectivity. **Note: (For the OLD harness only) Each board provides the necessary connections to feed all signals to the following connectors. If the auxiliary Analog or Digital Board is not present then a jumper plug (Part # 640B0039H01) must be installed to daisy chain the signals.**

The second power LED is D5 (+24Vdc). This +24Vdc voltage is generated on the Analog Board from the +12Vdc supply being fed from the Quantum™ power supply. If the +12VDC is present as stated earlier, then this LED will illuminate if the on-board +24VDC supply is functioning properly.

ACTIVE LED

The Analog Board has an Active LED indicator that blinks when the board’s software is running.

If the Active LED is not blinking, it could be an indication that the internal program is not running. Try powering the Remote panel off, then back on to see if the Active light starts blinking. If not, a new board may be required.

ANALOG INPUTS

An Analog Input is the portion of the hardware that allows devices such as temperature sensors and pressure transducers, to interface with the Q4/Q5. The software program within the Quantum™ is constantly looking at these input channels, via communications, and based upon what the voltage or current level of the channel is, will provide the necessary control for an associated action.

Analog inputs arrive at the board on connectors P4 through P10. Each of these connectors can receive two channels (for a total of twenty-four).

ANALOG OUTPUTS

An Analog Output is the portion of the hardware that the Quantum™ uses to provide control. These outputs are dedicated for a 4–20 mA signal and cannot be changed through the software configuration.
TROUBLESHOOTING THE ANALOG INPUTS AND OUTPUTS

Some problems that may be encountered involve troubleshooting the Analog inputs and outputs. The Analog Board has twelve Analog I/O board connectors labeled P4 through P10. The external Analog devices are wired to a connector plug. Position 1 connects to the plus (+) of the external device for channel 1, position 2 connects to the signal (SIG) of the external device for channel 1 and position 3 connects to ground (GND) of the external device for channel 1. Position 4 connects to the plus (+) of the external device for channel 2, position 5 connects to the signal (SIG) of the external device for channel 2 and position 6 connects to ground (GND) of the external device for channel 2, as shown below:

![Diagram of Analog Board Connections]

Each input channel is configurable through the operating software. There are twenty-four analog input channels that can be selected for 4-20 mA, 0-5 Vdc, ICTD, or RTD. Besides properly setting the software configuration, each channel is setup through software calibration for the proper transducer type and range, and each transducer must be calibrated through the appropriate sensor calibration screen. Improper setup of either the hardware or software will result in incorrect operation or range.

The most common fault associated with the improper reading of the analog channels other than hardware or software setup problems fall into one of the following categories:

- Sensor fault
- Wiring problem
- Improper grounding of system.

An open wire, shorted wire, or faulty sensor will usually give a reading at either the minimum or maximum end of the range scale. An erratic reading or a reading that seems to float up and down is usually indicative of a grounding problem. When a single transducer or cable is shorted to earth (or system) ground, this can show up as a whole assortment of problem channels. The easiest way to find a short to earth problem is to disconnect all the sensor plugs and ohm out each plug screw terminal to earth for open (infinite) impedance. All sensors should read open to earth. The third pin on pressure sensors is ground.

REPLACING A DEFECTIVE ANALOG BOARD

The procedure to replace an Analog board is outlined below:

1. Ensure that all channel configuration information for the board being replaced has been written down.
2. Shut off control power.
3. Unplug all connectors from the board.
4. Remove the old board from the unit and remove the new board from its packing and place both on an anti-static surface.
5. Check that all jumpers, dipswitches and components are properly setup on the new board using the old board as a reference (refer to the Analog Settings tables near the end of this section).
6. Install the modified replacement board in the panel.
7. Plug all connectors back in.
8. Turn on control power.
D5 - +24Vdc Power LED

LK3 & LK4 -
Install for Vibration

P1 - J-TAGG Port

SW1 - DIP Switch
(See Settings Chart)

LK1 - Install for 120 ohm terminator on RS-485 Communications

D9 - Active LED
D3 – Not used
D2 – Not used
D7 - COMM Rx LED
D8 - COMM Tx LE

D1 - +5Vdc Power

+5 Vdc

+12 Vdc

CH. 1 Output – Variable Speed (Zone A)
CH. 5 Output
CH. 9 Input
CH. 11 Input
CH. 13 Input
CH. 15 Input
CH. 17 Input

CH. 2 Output – Variable Speed (Zone B)
CH. 6 Output
CH. 10 Input
CH. 12 Input

CH. 3 Output – Variable Speed (Zone C)
CH. 7 Output
CH. 11 Input
CH. 14 Input
CH. 16 Input

CH. 4 Input – Ammonia (Zone A)
CH. 8 Output
CH. 12 Input
CH. 15 Input

CH. 5 Input – Ammonia (Zone B)
CH. 6 Input – Ammonia (Zone C)
CH. 7 Input
CH. 13 Input
CH. 16 Input

CH. 8 Input – Ammonia (Zone B)
CH. 9 Input
CH. 14 Input
CH. 17 Input

CH. 10 Input
CH. 11 Input
CH. 12 Input
CH. 13 Input
CH. 14 Input
CH. 15 Input
CH. 16 Input

CH. 18 Input
CH. 19 Input
CH. 20 Input
CH. 21 Input

CH. 22 Input
CH. 23 Input
CH. 24 Input

Part #: 640D0168H01
Revision:
Serial #:
COMMUNICATIONS

The following table is to be used when configuring the Quantum™ for external communications.

<table>
<thead>
<tr>
<th>LK1</th>
<th>In</th>
<th>120 ohm long communications line termination.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Out</td>
<td>No termination.</td>
</tr>
</tbody>
</table>

* default setting

MISCELLANEOUS

<table>
<thead>
<tr>
<th>LK2</th>
<th>In</th>
<th>Not Used</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Out</td>
<td>* default setting</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LK3</th>
<th>In</th>
<th>Not Used</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Out</td>
<td>* default setting</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LK4</th>
<th>In</th>
<th>Not Used</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Out</td>
<td>* default setting</td>
</tr>
</tbody>
</table>

NOTE: Although LK2, 3 and 4 are not used, they must still be set for the default positions.

DIPSWITCH SETTINGS

The following table is to be used to set the analog board addresses. Refer to and study the diagram at the bottom of this page to determine the correct board configuration.

<table>
<thead>
<tr>
<th>Comm. 4 of Quantum™ (Zones 1-15)</th>
<th>Comm. 3 of Quantum™ (Zones 16-30)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O Group</td>
<td>Analog Board #</td>
</tr>
<tr>
<td>1 1 Off Off Off Off Off Off Off</td>
<td>1 1 Off Off Off Off Off Off Off</td>
</tr>
<tr>
<td>2 2 On Off Off Off Off Off Off</td>
<td>2 2 On Off Off Off Off Off Off</td>
</tr>
<tr>
<td>3 3 Off On Off Off Off Off Off</td>
<td>3 3 Off On Off Off Off Off Off</td>
</tr>
<tr>
<td>4 4 On On Off Off Off Off Off</td>
<td>4 4 On On Off Off Off Off Off</td>
</tr>
<tr>
<td>5 5 Off Off On Off Off Off Off</td>
<td>5 5 Off Off On Off Off Off Off</td>
</tr>
</tbody>
</table>

Quantum™ LX Control Board

Comm. 4 (Zones 1-15)

Comm. 3 (Zones 16-30)
SECTION 6

SERVICE SCREENS

![Service Screens Image]

Service Screens

<table>
<thead>
<tr>
<th>Task</th>
<th>Service Interval</th>
<th>Next Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Filters</td>
<td>0000 00%</td>
<td>0000 02%</td>
</tr>
<tr>
<td>Change Filters</td>
<td>0000 00%</td>
<td>0000 02%</td>
</tr>
<tr>
<td>Change Coiled Lines</td>
<td>0000 00%</td>
<td>0000 02%</td>
</tr>
<tr>
<td>Change Condenser</td>
<td>0000 00%</td>
<td>0000 02%</td>
</tr>
<tr>
<td>45000 Limes</td>
<td>0000 00%</td>
<td>0000 02%</td>
</tr>
<tr>
<td>Change Condenser</td>
<td>0000 00%</td>
<td>0000 02%</td>
</tr>
<tr>
<td>Air Filters</td>
<td>0000 00%</td>
<td>0000 02%</td>
</tr>
<tr>
<td>Change Filters</td>
<td>0000 00%</td>
<td>0000 02%</td>
</tr>
<tr>
<td>Change Coiled Lines</td>
<td>0000 00%</td>
<td>0000 02%</td>
</tr>
<tr>
<td>Change Condenser</td>
<td>0000 00%</td>
<td>0000 02%</td>
</tr>
<tr>
<td>45000 Limes</td>
<td>0000 00%</td>
<td>0000 02%</td>
</tr>
<tr>
<td>Change Condenser</td>
<td>0000 00%</td>
<td>0000 02%</td>
</tr>
</tbody>
</table>

Note: The above table is a placeholder and the actual service intervals and next services will depend on the specific maintenance requirements of the Quantum™ LX AcuAir™ Control Panel.
DESCRIPTION: This screen allows the technician to view the status of all communications ports.

The following user selectable buttons are provided:

- [Show Comm1]
- [Show Comm2]
- [Show Comm3]
- [Show Comm4]

This screen allows the technician to view all of the communications information that the Quantum™ LX is receiving and transmitting, one port at a time. Simply select the button at the upper right side of the screen that corresponds to the port that you wish to view. The selected port name (in this case Comm4) will appear in the upper left side of the screen.

Each time a new command is sent or received, the screen will need to be refreshed by selecting the [Show CommX] button (where X is replaced with the comm port number).

This screen will display all data that is coming through the selected Communications (Comm) port. The top line of data is the most recent activity. At the left of each line, you should see whether the data is IN or OUT (Receive or Send), and the actual data (in Hexadecimal format). This information can be used to compare against the data being sent and received at the other end of the communications link, to verify proper operation.
SERVICE – Communications Loop-Back Test

DESCRIPTION: This screen allows the user to test the integrity of each of the communications channels, by using a Loop-Back cable.

Refer to the AcuAir Communications Manual (090.510-CS) for specific information about this test.
DESCRIPTION: The Diagnostics screen has been provided as a way for the user to test the Ethernet connection. Refer to the AcuAir Communications manual (090.510-CS) for further information on this screen.
DESCRIPTION: This screen allows the technician to perform system software maintenance. **NOTE:** Use caution when accessing this screen remotely with a web browser.

Perform the following steps to prepare the Quantum™ LX for software maintenance:

- Ensure that all setpoint values have been documented as a safety precaution. Install a USB device into the provided connection on the Quantum™.
- With power ON, insert the USB device into the USB port. Ensure that the tabbed key of the drive connector is plugged in as shown in Figure 1 of this section.
- Go to User Level 2. The default password is 20.
- Press the [Menu] key.
- Cursor down to Service… and press [Enter].
- Cursor down to Software Maintenance and press the [Enter] key.

The following selections have been provided:

1) **Save Setpoints** - Use this option to save all setpoints and custom text to a USB device as a form of backup:
 - The program will read the USB device, and the following dialog box will appear:
 - Any numerals that appear on the center line of this box will represent units that have already been saved (from 0 to 99). If no units have yet been saved, the center line will be blank.
 - Enter a number on the keypad that corresponds to the unit number that you wish to save, and then press [Enter]. If the unit number has not been saved before, the setpoints will be saved to a file on the USB device (a progress bar will appear asking you to Please Wait… In the future, any time you try to write the setpoints to this number, you will be prompted with a message telling you that the set number already exists – do you wish to overwrite it? Answer by highlighting the Yes button, and pressing [Enter] if you wish to overwrite the values. If you enter a number that does not appear on the center line, no such warning will appear.
 - After the file has been written, the dialog boxes will disappear, and you can either exit or continue with another function.

2) **Full System Install** - Use this option to install the program:
 - Ensure that all setpoint values have been documented as a safety precaution.

• If a valid USB device with the operating system loaded on it is plugged in, the software will be loaded. If however, there is no USB device installed, or the device does not contain the operating software, the following dialog box will appear:

• If the above dialog box appears, you must insert a valid software upgrade USB device.

3) **Restore Setpoints** – Use this option to re-load previously saved setpoints and custom text to the Quantum™.

• Ensure that all setpoint values have been documented as a safety precaution. Install the previously saved setpoint USB device into the provided connection on the Quantum™.

• The software program will read the USB device, and the following dialog box will appear:

• Any numerals that appear on the center line of this box will represent units that have already been saved (from 0 to 99). If no units have yet been saved, the center line will be blank, and therefore there are no setpoints to delete.

• Enter a number on the keypad that corresponds to the unit number that you wish to delete, highlight the Ok button, and then press [Enter]. You will be prompted with a new dialog box which will ask you OK to delete set number (0-99)?

• Highlight the Yes button, and press [Enter]. The dialog box will be updated with a new message stating that Set number (0-99) has been deleted!

• Press [Enter] to return to the Software Maintenance menu.

4) **Delete Setpoints** – Use this option to delete the setpoints and custom text for a particular unit:

• Ensure that all setpoint values have been documented as a safety precaution. Install the previously saved setpoints USB device into the provided connection on the Quantum™.

• Press the [4] button.

• The software program will read the USB device, and the following dialog box will appear:

• While leaving the USB device plugged in, press [5] to Exit.

• During the reboot of the Quantum™ LX, a message will appear that says, “A System Update file has been detected on the mounted USB device. Do you wish to perform this update?” Select [Yes], and a System Update will be performed.

• At the conclusion of the System Update, a message will appear that says, “The USB device can now be removed and power should be recycled.” Follow these instructions.

Setpoint Defaults When Performing A Quantum™ LX Software Upgrade

The term software upgrade refers to the whole procedure of Saving Setpoints, Full System Installs, and Restoring Setpoints when on the Software Maintenance screen. They get set to these default values even after a Restore Setpoints is performed, so the individual doing the upgrade must then set them manually to what they need to be if they are critical to the application.
This drawing represents one version of the LX where the USB stick plugs into the mother board with the use of an adapter.

This version of the LX has a USB connector located on the daughter board, no adapter is required.
DESCRIPTION: The About screen shows the Analog and Digital boards that have been detected. If a board has lost communications, a shutdown will be issued. All outputs are turned off on a Digital Board that has lost communications. All inputs will get set to their minimum value range on an Analog Board that has lost communications. A loss of communications to an analog board should result in sensor fault shutdown message that is associated with the sensors on that board. If the RX LED on the I/O board is blinking but the board was not detected on the About screen, or an I/O Comm failure occurs, check the address of the board.
SECTION 7

TROUBLESHOOTING

TROUBLESHOOTING A PROBLEM THAT APPEARS UNEXPLAINABLE

When there is a problem that makes no sense due to unexplainable things happening, check the following:

- Is the panel powered by an isolating power source such as a control transformer?
- Is the panel powered from a lighting or utility panel?
- Has the unit ever worked properly?
- If the unit used to work properly, try to determine when the problem first showed up.
- It is important to know if the problem occurs randomly, frequently, or all the time.
- Check what the temperature is at the unit location. Is it very hot or very cold?
- Make sure that a motor is not blowing exhaust air on the control panel.
- If it just started to act up, then check if there was recently a severe lightning storm, fire, flood, or a plant accident. If any of the following conditions are possible, then check for it:
 - Has any water, refrigerant, or oil leaked into the panel or conduit?
 - If it just started to act up, then check if anything was recently changed in the system (i.e. software or hardware.)
 - If it just started to act up, then check if any service was recently done to the unit or its electrical system?
 - If the Quantum™ is unexplainably shutting down, try disconnecting the communications cable to see if the problem goes away.
- Check if the communications cable shields are tied to machine ground at only one location. For a PLC or Opto22 based system, the shield should normally be tied only at the PLC or Opto22 panel.
- Check that you are using the Frick® recommended communications cable. See manual to match proper cable with type of communications (i.e., RS-422, RS-232, RS-485, or some other type of factory communication bus system.)
- If this is an older plant, has the plant wiring been brought up to code?
- Is power wiring mixed with control wiring?
- Is power wiring mixed with sensor wiring?
- Is power wiring mixed with communications wiring?
- Ensure that pressure transducers are properly grounded. The two types of transducers you may have are as follows: an older type has an 8 to 10 inch 3-conductor pigtail coming out of the transducer. This type will have the attaching cable’s shield cut off and insulated at the transducer end. The shield is then tied to a panel ground terminal in the panel. The newer type has the cable as an integral part of the housing and has the shield crimped to the case at the transducer end. This type of transducer has the cable’s shield cut off and insulated in the control panel.
- Ensure that temperature transducers are properly grounded. The temperature probes usually have two short wires coming out of the sensor, and are tied to a shielded cable at the thermal well head. The shield is insulated at the temperature probe and grounded at the panel end.
- Check if one of the temperature probes has a signal wire shorted to machine ground. To do this, first pull the orange plug from the appropriate channel of the Analog board and then use a DVM and check each white wire to machine ground and each black wire to machine ground.
- Check that all inductive loads (i.e. Coils, Solenoids, or Relays, etc.) connected to the I/O output modules have surge suppressers across them, preferably at the devices and not at the panel end.
- Make sure that you have a continuous ground back to the power source. The ground connection must be aluminum or copper. A conduit ground will not work.
- Ensure that there is no AC wiring lying next to any printed circuit boards.
- Unexplainable unit failures are usually indicative of noise due to wiring problems (i.e. incorrect earth grounds, mixed power and control wiring, unsuppressed coils, etc)
- If the unit is unexplainably shutting down, check if the machine shares power with something else.
ERASING THE SYSTEM SETPOINTS

In the event it becomes necessary to erase the systems setpoints, use the following procedure:

1. Ensure that the existing setpoints are documented if possible.
2. Power the controller down.
3. Locate the processor board (located in the Quantum™ LX AcuAir™ Control Panel).
4. If the processor has the Q4 processor board, locate and temporarily remove LK11 (on the larger of the two boards).
5. Power the unit up.
6. Wait for one minute to allow the processor to fully boot.
7. Power the unit down.
8. Replace LK11 if removed for the Q4.
9. Power back up.
SECTION 8

AcuAir™ CONTROL PANEL DRAWINGS

This table lists the numbers for the drawings that appear on the following pages. The drawings shown here is the latest revision as of the printing of this manual. These drawings appear here for reference purposes only, and are subject to change without notice. When installing, or servicing equipment, always refer to the actual drawings that are included with the control panel for the latest information.

<table>
<thead>
<tr>
<th>Wiring Diagrams</th>
<th>Page</th>
<th>Drawing Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q5 Wiring Diagrams</td>
<td>50 - 60</td>
<td>642D0590 Rev. -</td>
</tr>
<tr>
<td>Q4 Wiring Diagrams</td>
<td>61 - 68</td>
<td>642D0337 Rev. A</td>
</tr>
<tr>
<td>Communications Wiring Diagrams</td>
<td>69</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Q5 WIRING DIAGRAMS
(Page 7 of 11)
COMMUNICATIONS WIRING DIAGRAMS

TO CUSTOMER REMOTE COMPUTER/DCS

RS-485 COMMUNICATIONS

<table>
<thead>
<tr>
<th>To Customer Remote Computer /</th>
<th>AIR HANDLER #1</th>
<th>AIR HANDLER #2</th>
<th>AIR HANDLER #3</th>
<th>AIR HANDLER #4</th>
</tr>
</thead>
<tbody>
<tr>
<td>RX/TX</td>
<td>BLK</td>
<td>BLK</td>
<td>BLK</td>
<td>BLK</td>
</tr>
<tr>
<td>+RX/ TX</td>
<td>CLR</td>
<td>CLR</td>
<td>CLR</td>
<td>CLR</td>
</tr>
<tr>
<td>Cable</td>
<td>Belden #9841</td>
<td>#24 AWG or Equal</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RS-422 COMMUNICATIONS

<table>
<thead>
<tr>
<th>To Customer Remote Computer / DCS</th>
<th>AIR HANDLER #1</th>
<th>AIR HANDLER #2</th>
<th>AIR HANDLER #3</th>
<th>AIR HANDLER #4</th>
</tr>
</thead>
<tbody>
<tr>
<td>TX</td>
<td>BLK</td>
<td>BLK</td>
<td>BLK</td>
<td>BLK</td>
</tr>
<tr>
<td>+TX</td>
<td>GRN</td>
<td>GRN</td>
<td>GRN</td>
<td>GRN</td>
</tr>
<tr>
<td>RX</td>
<td>RED</td>
<td>RED</td>
<td>RED</td>
<td>RED</td>
</tr>
<tr>
<td>Cable</td>
<td>Belden #9829</td>
<td>#24 AWG or Equal</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>